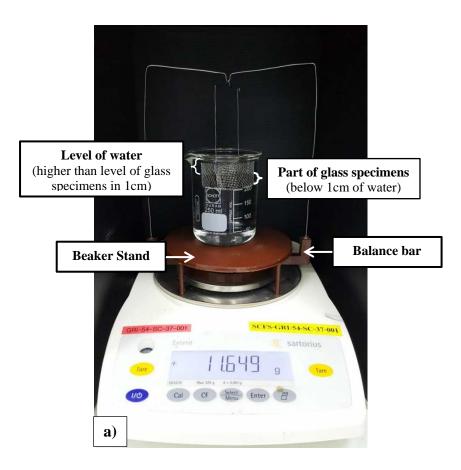
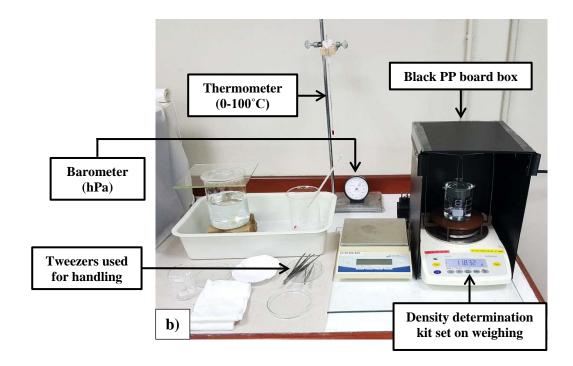
Instruction Manuals of

The density determination kit based on the buoyancy method

Purpose


This document is the guideline for use of the density determination kit based on the buoyancy method. It has designed to provide "How to use it for determining the glass density?". It concludes the experimental instruments, experimental setup, experimental procedure, and calculation of density values.


Experimental instruments and setup

- 1. Water preparation:
 - add 0.1mL of surfactant in 200mL of boiled DI water
 - use it within 24 hours

2. Specimen preparation:

• use at least 20g of cleaned and dried glass specimens

Experimental procedure

- 1. Weight the balance bar with empty basket in air and tare to zero
- 2. Put 20g of glass specimens in the basket, weight them in the air (W_A in g), and put them out from the basket
- 3. Weight the balance bar with empty basket in water (beaker of DI water) and tare to zero
- 4. Put one by one of 20g of glass specimens in the basket, weight them in water (W_W in g), and put them out from the basket
- 5. Let the glass specimens dry
- 6. Repeat all steps for 3 times

Additional Note:

- Read the laboratory air temperature (T_A in °C) and the barometric pressure (P_A in hPa) for air density determination (ρ_A)
- Read the water temperature (T_W in °C) of DI water in beaker for water density determination (ρ_W)
- Measure density of glass specimens (ρ_S) from

$$\rho_S = \frac{W_A}{W_A - W_W} \times (\rho_W - \rho_A) + \rho_A$$

• Determine the water density (ρ_W) from Table1 as follow

Temperature of water (T _W / °C)		20	21	22	23	24	25
	0	0.9982	0.99799	0.99777	0.99754	0.9973	0.99705
of temperature	0.1	0.99818	0.99797	0.99775	0.99752	0.99727	0.99702
Ipera	0.2	0.99816	0.99795	0.99773	0.99749	0.99725	0.997
tem	0.3	0.99814	0.99793	0.9977	0.99747	0.99722	0.99697
	0.4	0.99812	0.99791	0.99768	0.99744	0.9972	0.99694
decimal	0.5	0.9981	0.99788	0.99766	0.99742	0.99717	0.99692
t de	0.6	0.99808	0.99786	0.99763	0.9974	0.99715	0.99689
first	0.7	0.99806	0.99784	0.99761	0.99737	0.99712	0.99687
The	0.8	0.99804	0.99782	0.99759	0.99735	0.9971	0.99684
	0.9	0.99801	0.99779	0.99756	0.99732	0.99707	0.99681

Table1: Density of Air-Free Water (g/cm³) from ASTM Standard test method (C693-93).

Temperature of water (T _W / °C)		26	27	28	29	30
re	0	0.99679	0.99652	0.99624	0.99595	0.99565
of temperature	0.1	0.99676	0.99649	0.99621	0.99592	0.99562
npe	0.2	0.99673	0.99646	0.99618	0.99589	0.99559
f ter	0.3	0.99671	0.99643	0.99615	0.99586	0.99556
	0.4	0.99668	0.9964	0.99612	0.99583	0.99553
ci m	0.5	0.99665	0.99638	0.99609	0.9958	0.9955
t dec	0.6	0.99662	0.99635	0.99606	0.99577	0.99547
first	0.7	0.9966	0.99632	0.99603	0.99574	0.99543
The first decimal	0.8	0.99657	0.99629	0.996	0.99571	0.9954
	0.9	0.99654	0.99626	0.99598	0.99568	0.99537

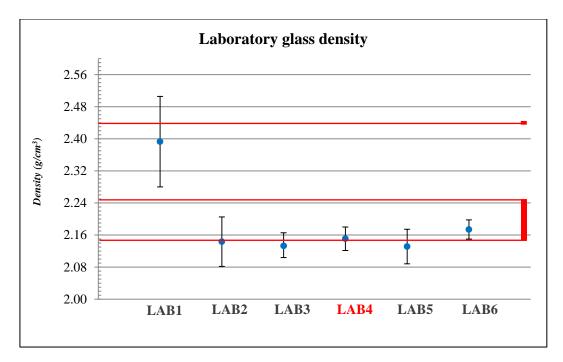
• Determine the air density (ρ_A) from

$$\rho_A = \frac{0.0012932}{1 + (0.0036728 \times T_A)} \times \frac{P_A}{1013.25}$$

Laboratory recording sheet

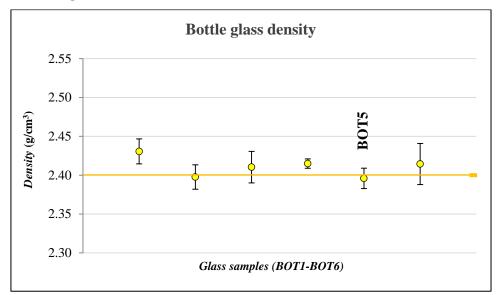
Sample	Round (Times)	Temp of air (T _A , °C)	Pressure of air (P _A , hPa)	Weight in air (W _A , g)	Temp of water (T _w , °C)	Weight in water (W _W , g)	ρ _A (g/cm ³)	ρ w 3 (g/cm ³)	Ps 3 (g/cm)
	1								
	2								
	3								
	1								
	2								
	3								
	1								
	2								
	3								
	1								
	2								
	3								
	1								
	2								
	3								

Density of glass specimens

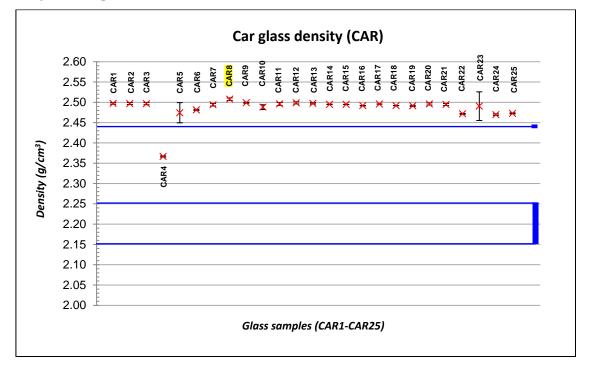

Glass samples	Appearance	$\rho_{s,av} \pm s.b.$ (g/cm ³)	
LAB4	D	2.151 ± 0.029	
BOT5		2.396 ± 0.013	
CAR8		2.508 ± 0.003	

List of glass specimens

(Glass Types	Glass sample numbers	Description			
		CAR1				
	Common	CAR2	Rear back glass (clear float glass)			
	glass	CAR3				
	8	CAR4*	Bus glass			
		CAR5	Side view mirror of YAMAHA Motorcycle			
	Mirror glass	CAR6	Rear view mirror of Mercedes-Benz Original-Teile Race car			
		CAR7	Front windshield of NIZZAN ALMERA			
		CAR8*				
		CAR9*	Bus glass			
		CAR10	Front door glass of NIZZAN ALMERA			
		CAR11				
SSE		CAR12				
Car glass	Laminated	CAR13				
ar	glass	CAR14*				
\circ	8	CAR15*	Bus glass			
		CAR16				
		CAR17				
		CAR18*				
		CAR19*	Bus glass			
		CAR20*				
	Tempered	CAR21	Extended cab glass of CARRYBOY Corporation Co., Ltd.			
		CAR22*				
	glass	CAR23*	1			
	giass	CAR24*	– Bus glass			
		CAR25*	-			
		LAB1	Petri dish			
		LAB2	Pyrex Test tube			
	_	LAB3	SCHOTT DURAN Beaker (250ml)			
Lal	ooratory glass	LAB4	SCHOTT DURAN Erlenmeyer flask (250ml)			
	LAB5		SCHOTT DURAN Cylinder (100ml)			
		LAB6	Stirring rod			
		BOT1	Brown color (LEO Beer of SINGHA Corporation Co., Ltd.)			
		BOT2	Brown color (Coconut syrup 100% of Cofe'Corporation Co., Ltd.)			
		BOT3	Green color (Sprite Carbonated beverage of COCA-COLA Company)			
	Bottle glass	BOT4	Colorless (Diet Coke Carbonated beverage of COCA-COLA Company)			
		BOT5	Colorless (Singha Soda Water of SINGHA Corporation Co., Ltd.)			
		BOT6	Colorless (Common milk bottle glass)			


*The samples of car glass were gotten from the local automobile repair shop, which has located in Pathum Thani province.

Density of Laboratory glass


Glass samples	$\rho_{\mathbf{S},\mathbf{av}} \pm \mathbf{S}.\mathbf{D}.$ (g/cm ³)
LAB1	2.393 ± 0.113
LAB2	2.143 ± 0.062
LAB3	2.133 ± 0.032
LAB4	2.151 ± 0.029
LAB5	2.131 ± 0.043
LAB6	2.174 ± 0.024

Density of Bottle glass

Glass samples	$\rho_{\mathbf{S},\mathbf{av}} \pm \mathbf{S}.\mathbf{D}.$ (g/cm ³)		
BOT1	2.431 ± 0.016		
BOT2	2.398 ± 0.016		
вот3	2.410 ± 0.020		
BOT4	2.415 ± 0.006		
BOT5	2.396 ± 0.013		
BOT6	2.414 ± 0.026		

Density of Car glass

Glass samples	$\rho_{\mathbf{S},\mathbf{av}\pm}\mathbf{S.D.}$ (g/cm^3)	Glass samples	$\rho_{S,av\pm}$ S.D. (g/cm ³)	Glass samples	$\rho_{S,av\pm}S.D.$ (g/cm ³)
CAR1	2.497 ± 0.002	CAR10	2.488 ± 0.006	CAR19	2.491 ± 0.001
CAR2	2.497 ± 0.002	CAR11	2.496 ± 0.004	CAR20	2.496 ± 0.003
CAR3	2.497 ± 0.003	CAR12	2.499 ± 0.003	CAR21	2.495 ± 0.003
CAR4	2.367 ± 0.002	CAR13	2.497 ± 0.002	CAR22	2.472 ± 0.001
CAR5	2.474 ± 0.025	CAR14	2.4950 ± 0.0004	CAR23	2.491 ± 0.035
CAR6	2.481 ± 0.001	CAR15	2.4949 ± 0.0002	CAR24	2.470 ± 0.002
CAR7	2.494 ± 0.003	CAR16	2.4917 ± 0.0005	CAR25	2.473 ± 0.001
CAR8	2.508 ± 0.003	CAR17	2.4957 ± 0.0001		
CAR9	2.499 ± 0.001	CAR18	2.4917 ± 0.0003		